Do medium-scale farms improve market access conditions for Zambian smallholders?

Thom S. Jayne^a, William J. Burke^{a,b}, Nicholas J. Sitko^c

a-Michigan State University b-Agric. & Food Policy Consulting c-Food and Agriculture Organization of the United Nations

Context & Questions

- Changing land dynamics
 - Vast majority of rural Africans are still smallholders (e.g., farms less than 5 hectares)
 - Rapid increase in "medium-scale" or "emergent" farmers (5-100 ha) (Jayne et al., 2016)
 - Kenya 20% of operated land
 - Ghana 32%
 - Tanzania 37%
 - Zambia 53%
 - Much discussion on how/whether the rise of MS farms marginalizes smaller farms
 - Could there be benefits to smaller farms?
 - Scale economies for LSTs \rightarrow Lower transaction costs
 - Competition
 - Higher farm-gate prices

Background - Data - Conceptual framework - Approach - Results - Conclusion

Context & Questions

Larger farms attract larger scale traders (LSTs)

Maize marketing activity by farm size categories

Farm category (defined by area cultivated)	Share of farmers	Share of group that sell maize	Share of sellers that sell to private sector	Share of sellers to private sector who sell to LST
"A"- farm <5 ha	95%	43%	50%	14%
"B"- 5 – 10 ha	4%	84%	44%	35%
"C"- 10 – 20 ha	1%	89%	53%	61%

Source: Indaba Agricultural Policy Research Institute; Rural Agricultural Livelihoods Surveys, 2012 & 2015

District-level simple regression:

(Share of sales to LSTs)_t =
$$0.039 + 0.323^{***} \times (Share of land on farms > 5ha)_{t-1}$$

[Standard errors] [0.029] [0.119] Mean=0.155:

 $N=74; R^2=0.09$

Mean=0.155; About 7% are 0; About 5% >0.4

Background - Data - Conceptual framework - Approach - Results - Conclusion

Context & Questions

- Are smallholder farm maize sales to LSTs higher in areas with more medium-scale farms?
 - Sales to small scale traders?
- Do LSTs offer higher prices to farmers than other private traders, holding other factors constant?
- "Spillover" effects suggest the rise of MSFs could mean market access and better prices for *all* farmers.

Data

- Rural Agricultural Livelihoods Surveys (RALS)
 - Indaba Agricultural Policy Research Institute (IAPRI)
 - Central Statistical Office (CSO)
 - Ministry of Agriculture & Livestock (MAL)
 - Data for maize sales & other farm/community characteristics
 - 8,838 households in 2012; 7,933 in 2015
- Crop Forecast Surveys
 - CSO/MAL
 - Measuring farmland concentration at district level
 - **13,265** households in 2012; **13,350** in 2015

Source: RALS12, Google Earth

Conceptual framework

Increase in MSFs → higher share of land under cultivation on farms > 5ha

Geographic concentration of surpluses →
possible scale economies in trading →
Attracting traders, esp. LSTs & even SSTs & satellite traders.

See companion paper (Sitko, Burke & Jayne, *JDS* 2018)

Lower unit transaction costs & Greater competition

Higher farm-gate prices received by all sellers (large & small farms)

Other potential benefits:

-Compared to FRA (government buyer), payment is timely & (rising) prices can change quickly with market

Which pathway applies or dominates is an empirical question

Exercising monopsony power to crowd out smaller traders

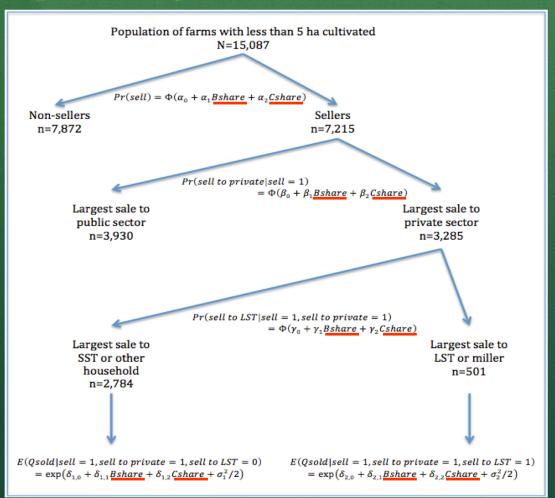
Lower farm-gate prices received by sellers

Other potential problems:

-Smaller farms may not be able to consistently meet quality standards
-Land pressure on smaller farms → decreased fallow; unused tracts

Background - Data - Conceptual framework - Approach - Results - Conclusion

Defining a large-scale trader (LST)


- For transaction-specific data we must rely on farmers to tell us:
 - Does the trader purchase greater volumes of grain than the average trader in the area?
 - Does the trader personally come to villages to buy grain or does he/she operate buying points and hire agents to buy on their behalf?
 - Does the trader have a company name or is the trader buying grain as an individual?
- Buyers are coded as "LST" if all three indications suggest they are large scale

Multi-Stage Model

Population of farms with less than 5 ha cultivated N=15,087

- Probit models
 - Selling
 - Selling to private market
 - Selling to LSTs
- Lognormal model for quantity sold to
 - SST
 - LST

Multi-Stage Model

- Probit models
 - Selling
 - Selling to private market
 - Selling to LSTs
- Lognormal model for quantity sold to
 - SST
 - LST
- Key variables are district share of land under cultivation "B" & "C" farms in district

Price regression models

- Estimate price regressions using data from the 2,683 transactions with traders (SSTs & LSTs) to investigate the "ceteris paribus" price difference.
- A note on "ceteris paribus"
 - Careful about "controlling for the mechanism"
 - E.g., controlling for transaction specific characteristics (why would a seller choose an LST over SST if transport costs and everything else are constant?)
 - Takeaway point Robustness across several specifications – is a useful part of this (and MSM) analysis

MSM results

Partial effect estimates	of MSM of mai	ze market parti	icipation for "A farm	ıs"				
	$\partial \Pr(\text{sell})/\partial x$	∂Pr(sell to	∂Pr(sell to LST	$\partial E(Qsold \mid$	$\partial E(Qsold \mid sell=1,$	∂E(sales to SST	∂E(sales to LST	Γ
		private	or miller	sell=1, sell to	sell to private=1,	or other $hh)/\partial x$	or miller)/ ∂x	
		$sell=1)/\partial x$	sell=1, sell to	private=1, sell	sell to LST)/ ∂x			
			private=1)/ ∂x	to SST)/ ∂x				
	(n=15,087)	(n=7,215)	(n=3,285)	(n=2,784)	(n=501)	(n=15,087)	(n=15,087)	
Model (i) – Farmland	oncentration only	as explanatory	ariables					
District share of land	0.2287***	0.1048	0.2277**	1,778.5***	-2,487.2	376.9***	68.47	
under "B-farms"	(0.074)	(0.101)	(0.107)	(513.2)	(2,362.5)	(96.7)	(66.0)	
District share of land	0.4429***	1.242***	0.1955	942.07*	4,410.09	747.1***	433.4***	
under "C-farms"	(0.114)	(0.153)	(0.138)	(548.3)	(3,165.3)	(125.8)	(94.4)	
Model (ii) – Controlling	for household c	iaracteristics, we	ather & climate, trans	saction costs char	acteristics			
District share of land	0.119	0.288**	0.063	3,236.3***	-12,551.3**	381.1***	-107.5	
under "B-farms"	(0.08)	(0.13)	(0.11)	(796.0)	(5,647.0)	(112.2)	(82.3)	
District share of land	0.674***	0.983***	0.568***	4,969.3***	11,214.9***	886.5***	700.1***	
under "C-farms"	(0.12)	(0.17)	(0.15)	(1,156.0)	(4,312.5)	(165.4)	(109.6)	
Model (iii) – Controllin	ng for household	characteristics; v	weather & climate; tra	nsaction costs costs	aracteristics; provinc	ar, aime & province t	IIIIe cirects	
District share of land	0.640***	0.121	0.364**	3,983.9***	-9,523.1	504.6***	103.1	
under "B-farms"	(0.10)	(0.16)	(0.18)	(1,149.2)	(6,466.8)	(136.7)	(117.2)	
District share of land	0.150	0.022	-0.071	-934.6	4,219.7	22.56	78.1	
under "C-farms"	(0.13)	(0.18)	(0.16)	(712.0)	(4,126.2)	(151.2)	(134.6)	
C II 1 1 1 1		(0.10)	(0.10)	(712.0)		(131.2)	(137.0)	

Sources: Household sales data from the Rural Agricultural Livelihood Surveys (2012, 2015); District farmland concentration variables from the Crop Forecast Surveys (2012; 2015)

Notes: Bootstrapped standard errors from 200 replications in parentheses, *, **, *** indicates statistical significance at the 1, 5 and 10% levels respectively..

Price regression results

Lognormal maize price regressions from Zambia's 2012 & 2015 marketing seasons

	Variables added to each model						
ln(real price) ^a =	(1)	(2)	(3)	(4)	(5)		
Sale was to LST	0.044***	0.075***	0.040***	0.044***	0.029**		
(1=yes)	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)		
ln(km to sale)	, ,	, ,	0.026***	0.025***	0.022***		
			(0.00)	(0.00)	(0.00)		
Month & year of							
sale	No	No	No	Yes	Yes		
ln(quantity sold)					0.020***		
(tonnes)					(0.01)		
District fixed	No	Yes	Yes	Yes	Yes		
effects	110	103	103	103	103		
Constant	-0.228***	-0.273***	-0.310***	-0.409***	-0.399***		
	(0.01)	(0.03)	(0.04)	(0.06)	(0.06)		
Observations	2,683	2,683	2,682	2,682	2,681		
R-squared	0.006	0.143	0.163	0.205	0.213		

Source: IAPRI Rural Agricultural Livelihoods Surveys (2012 & 2015). a-Prices are deflated to a common base using a monthly consumer price index for Zambia published by the IMF and available at data.imf.org

Conclusions

- The increasing number of medium-scale farms are inducing large-scale private investments in grain trading
- Rise of MSFs associated with a greater likelihood that small farms
 - Sell maize
 - Sell to private traders
 - Sell to one or more LSTs
- Average sales to LSTs (and SSTs) from farms<5ha increases, ceteris
 paribus (marginal effect on "unconditional" expected values are positive
 & significant)
- Depending on controls, we estimate prices paid by LSTs to farmers are 2.9% - 7.5% higher than SSTs
- At least with respect to the evolution of grain marketing channels, the rise of MSFs seems, on balance, to also benefit even the smallest farms.

